Mechanisms of Reduced Astrocyte Surface Coverage in Cortical Neuron-Glia Co-cultures on Nanoporous Gold Surfaces.

نویسندگان

  • Christopher A R Chapman
  • Hao Chen
  • Marianna Stamou
  • Pamela J Lein
  • Erkin Seker
چکیده

Nanoporous gold (np-Au) is a promising multifunctional material for neural electrodes. We have previously shown that np-Au nanotopography reduces astrocyte surface coverage (linked to undesirable gliosis) while maintaining high neuronal coverage in a cortical primary neuron-glia co-culture model as long as two weeks in vitro. Here, we investigate the potential influence of secreted soluble factors from cells grown on np-Au on the cell type-specific surface coverage of cells grown on conventional tissue culture plastic and test the hypothesis that secretion of factors is responsible for inhibiting astrocyte coverage on np-Au. In order to assess whether factors secreted from cells grown on np-Au surfaces reduced surface coverage by astrocytes, we seeded fresh primary rat neuron-glia co-cultures on conventional polystyrene culture dishes, but maintained the cells in conditioned media from co-cultures grown on np-Au surfaces. After one week in vitro, a preferential reduction in astrocyte surface coverage was not observed, suggesting that soluble factors are not playing a role. In contrast, four hours after cell seeding there were a significant number of non-adhered, yet still viable, cells for the cultures on np-Au surfaces. We hypothesize that the non-adherent cells are mainly astrocytes, because: (i) there was no difference in neuronal cell coverage between np-Au and pl-Au for long culture durations and (ii) neurons are post-mitotic and not expected to increase in number upon attaching to the surface. Overall, the results suggest that the np-Au topography leads to preferential neuronal attachment shortly after cell seeding and limits astrocyte-specific np-Au surface coverage at longer culture durations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversed operation of glutamate transporter GLT-1 is crucial to the development of preconditioning-induced ischemic tolerance of neurons in neuron/astrocyte co-cultures.

Sublethal ischemia leads to increased tolerance against subsequent prolonged cerebral ischemia in vivo. In the present study, we investigated the roles of the astrocytic glutamate (Glu) transporter GLT-1 in preconditioning (PC)-induced neuronal ischemic tolerance in cortical neuron/astrocyte co-cultures. Ischemia in vitro was simulated by subjecting cultures to both oxygen and glucose deprivati...

متن کامل

Increased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment

Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...

متن کامل

Neural cell adhesion molecule expression is regulated by Schwann cell- neuron interactions in culture

To investigate the cellular and molecular signals underlying regulation of cell adhesion molecule expression, the influence of interactions between dorsal root ganglion neurons and Schwann cells on their expression of L1 and N-CAM was quantitated by immunogold electronmicroscopy. The numbers of antibody binding sites on cell surfaces of neurons and glia were compared between pure populations an...

متن کامل

Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C.

Niemann-Pick disease type C (NPC) is a deadly neurodegenerative disease often caused by mutation in a gene called NPC1, which results in the accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system. Most studies on the mechanisms of neurodegeneration in NPC have focused on neurons. However, the possibility also exists that NPC1 affects neuronal functions...

متن کامل

Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures.

L-DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of L-DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. L-DOPA (50 microM) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular and molecular bioengineering

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2016